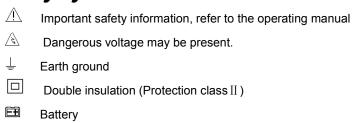
3 PHASE DIGITAL POWER CLAMP METER

Safety Precautions

- Read these operation instructions thoroughly and completely before operating your meter. Pay particular attention to WARNING. The instructions in these warnings must be followed.
- You must be careful when working with voltages above 30V AC. Keep fingers behind the probe barriers while measuring.
- Never use the meter to measure voltages that might exceed the maximum allowable input value of any function measurement mode.
- Always inspect your meter and test leads before every use. If any abnormal conditions exist: broken test leads, cracked cases, LCD not reading, etc, do not attempt to take any measurement.
- Using the meter with the equipped test leads is only conform to safety requirements. If you need
 instead broken test leads, you must replaced with the same as type and electric specification.
- Never touch a voltage source when the test leads are plugged into a current jack.
- Do not expose the instrument to direct sunlight, extreme temperature or moisture.

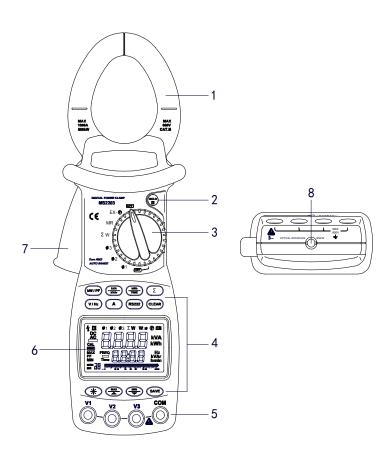

WARNING

READ THE INSTRUCTIONS BEFORE
USING THE INSTRUMENT

Safety Information

Three-phase digital power clamp meter has been designed according to IEC1010-1 and IEC1010-2-032 concerning safety requirements for electrical measuring instruments and handheld clamps with pollution degree 2, overvoltage category (600V CATIII).

Safety Symbols



General Description

Three-phase digital power clamp meter is a handheld aptitude meter with power measurement, it is incorporated current meter and power measurement instrument. The meter is composed of three channels: voltage, current, power and single chip Microcontroller. It has powerful measuring and data processing software, and complete to measure, calculate and display of the 8 parameters: Voltage, Current, Active Power, Power Factor, Apparent Power, Reactive Power, Active Energy, Frequency. It has Stable capability, easy operation. It is especially suitable for measurement and overhaul of the electric power equipment and the power-supply circuit on the spot. The structure of the instrument is pincers, it is very small, very light and portable, make measurement easy and fast. To the power measurement user, the digital power clamp meter which is used completely in three-phase system is one of the best instrument.

Feature

- 1. For power measurement of 3-phase 3-wire circuit, 3-phase 4-wire circuit, single-phase circuit.
- The instrument can complete the true RMS value measurement. If there is nonsinusoidal AC current input signal, it can accurately measure the active current.
- Using autorange switch circuit and modulus transducer which has 8000 count and high resolution, the instrument has high accuracy and easy operation.
- Minimum current of Active Energy measurement is 0.5A, it can
 measure expending energy per hour of general electrical equipment.
 Measurement and display five parameters of power: Active Power, Apparent Power, Power Factor,
 Reactive Power, Active Energy.
- Double display two parameters on each menu and store 28 groups of measurement parameter.
- Measure five power parameters of each phase and total power value in three-phase measurement mode respectively.
- 7. Multifunctional button control, there are double scales analogue bar

- V1: The input terminal for the first phase, using the yellow test lead to connect.
- V2: The input terminal for the second phase, using the green test lead to connect.
- V3: The input terminal for the third phase, using the red test lead to connect.
- COM: Common terminal, the earth input terminal for all measure- -ment modes, using the black test lead to connect.

6. LCD Display

4 digits display, 7 segment LCD to display function mode, measured value and symbols.

7. Trigger

Press the lever to open the transformer. When the lever is released, the jaws will close again.

8. RS232C Data Interface

Your clamp meter can use a serial interface cable to communicate with a computer. Refer to Figure 18 for complete instructions.

Using the Selector

Turn the meter on by rotating the selector to any function as following . (**Table 1. Introducing The Selector**)

ITEM	DESCRIPTION
OFF	POWER OFF. Turn the meter off
EX-P	EXTERNAL POWER SUPPLY. No use battery, select tested
	voltage signal be power supply for Active Energy measure-
	-ment for long at one time.
MR	RECALL DATA. Recall saved data in the meter memory.
ΣW	TOTAL POWER. For display total power value of three phase

(Table 1. Introducing The Selector)

	,
ITEM	DESCRIPTION
Ф3	THIRD MEASUREMENT CHANNEL. For V3 input terminal
	measurement
Ф2	SECOND MEASUREMENT CHANNEL. For V2 input terminal
	measurement
Ф1	FIRST MEASUREMENT CHANNEL. For V1 input terminal
	measurement

Using the buttons

(Table 2. Function Button)

	(1221 = 1 221 = 1 221 = 1		
ITEM	DESCRIPTION		
	kW / PF	Active Power, Power Factor Measurement Button.	

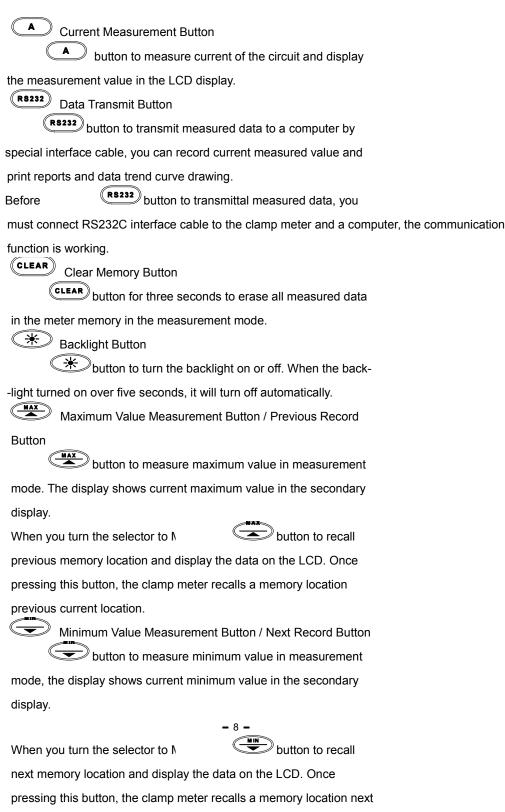
Data Transmit Button
Clear Memory Button
* Backlight Button
Maximum Value Button/ Previous Record Button
Minimum Value Button/ Next Record Button
Data Save Button

Active Power, Power Factor Measurement Button

button to measure Active Power and Power Factor in measurement mode. Then the LCD shows Active Power reading in the primary display and Power Factor reading in the secondary display.

Apparent power, Reactive Power measurement button

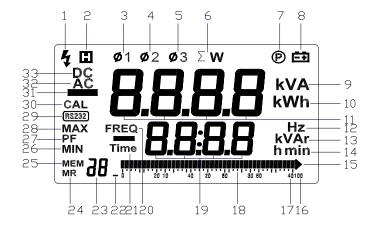
button to measure Apparent Power and Reactive Power in measurement mode.


Then the LCD shows Apparent Power reading in the primary display and Reactive Power reading in the secondary display.

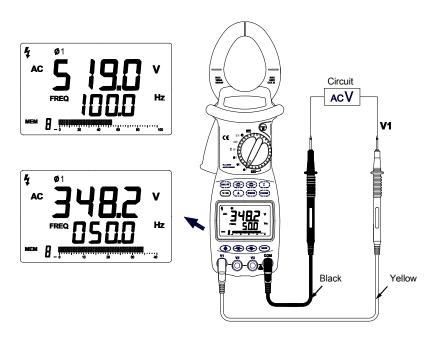
Active Energy, Time Measurement Button

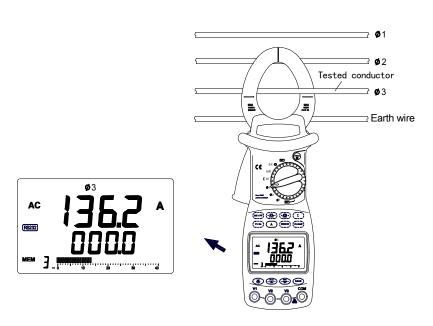
CD shows

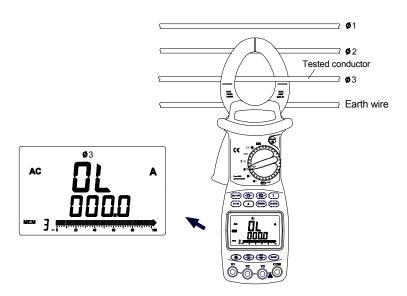
Σ

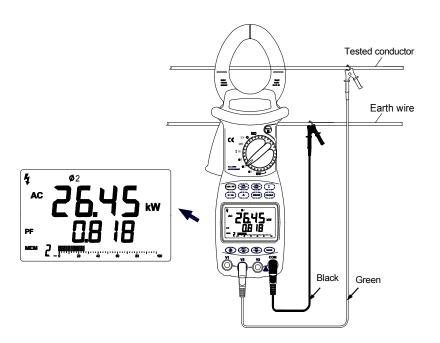

(V / Hz

current location.

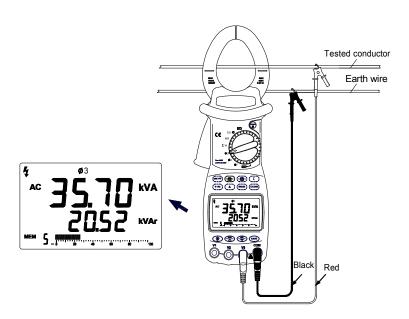

SAVE Data Save Button

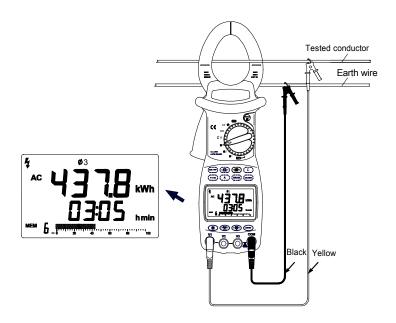

button to save current measured data to the meter in measured mode. The meter can save 28 groups of measured data into the meter at most.

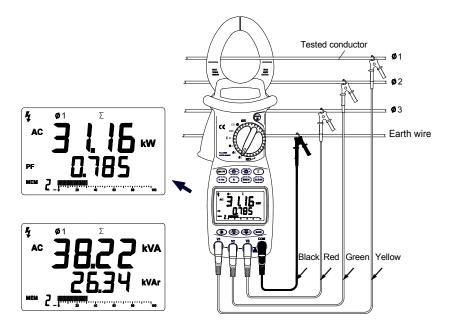


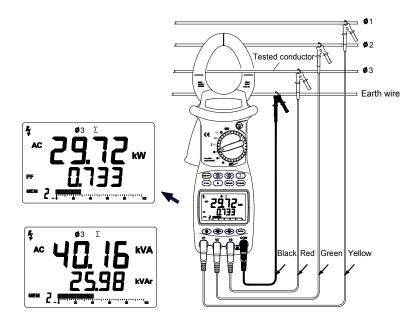

(For primary display)

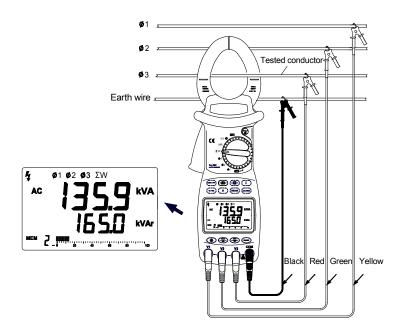
- 10. Active power unit (kW), Active Energy unit (kWh)
- 11. 4 digit display (For primary display)
- 12. Frequency unit
- 13. Voltage unit (V), current unit (A), Apparent Power unit (kVA), Reactive Power unit (kVAr) (For secondary display)
- 14. Time unit: hour(h), minute(min)
- 15. Overflow symbol
- 16. 100 graduate scale
- 17. 40 graduate scale
- 18. Bar graph
- 19. 4 digit display (For secondary display)
- 20. Frequency unit
- 21. Time symbol
- 22. Negative sign of scale
- 23. Number of memory location symbol
- 24. Recall data symbol
- 25. Save data symbol

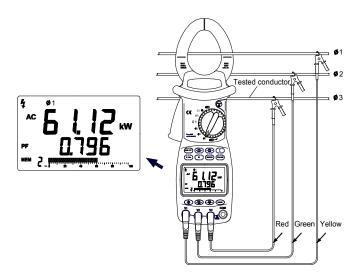




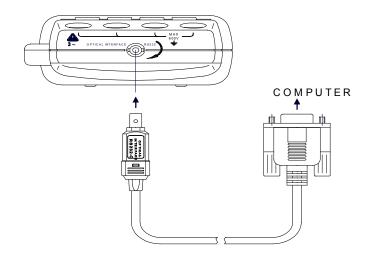



.

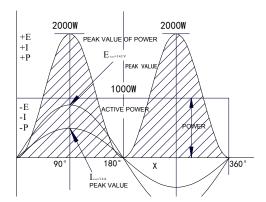


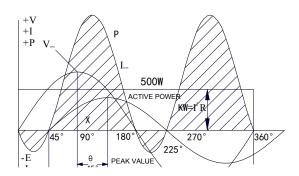

NOTE: When you turn the selector to EX-P to measure voltage or power parameter, the

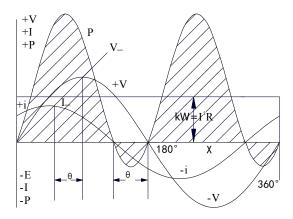
⊹

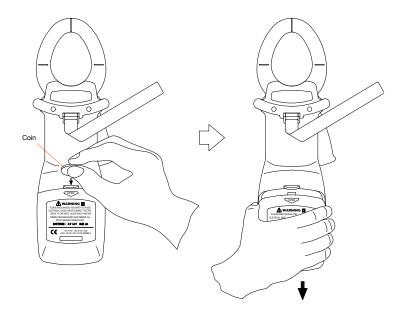

✦

4


Connect RS232C interface cable to the clamp meter as shown in Figure 18, then rotate the interface cable deasil to lock it in the meter. Connect the other plug of the interface cable to a serial port of a computer. Then the meter can transmit measured data to computer by the infrared photoelectricity RS232C interface in real-time mode. If you want to take out the interface cable from the meter, first you must rotate the cable widdershins to unlock it, then you can pull out it.


You will install the special data record software into the computer according to README.TEXT file in SETUP disk. When the meter is in measurement more button, you can record and


print the measured data of the meter in real time mode in the WINDOWS. The software can



300V	±(1.2%+5)	0.1V	(10Pf SHUNT)
600V	±(1.2%+5)	0.1V	

Max. Overload Voltage: 750V (RMS)

AC CURRENT

RMS

RANGE	ACCURACY	RESOLUTION
40A	±(2%+5)	0.1A
100A	±(2%+5)	0.1A
400A	±(2%+5)	0.1A
1000A	±(2%+5)	0.1A

Max. Overload Current: 1500A

ACTIVE POWER

(W)

RANGE	ACCURACY	RESOLUTION
4kW	±(3%+5)	0.01kW
10kW	±(3%+5)	0.01kW
40kW	±(3%+5)	0.01kW
100kW	±(3%+5)	0.01kW
600kW	±(3%+5)	0.1kW

Minimum measurement current : 5A Minimum measurement voltage : 20V

APPARENT POWER

(VA)

RANGE	ACCURACY	RESOLUTION
4kVA	±(3%+5)	0.01kVA
10kVA	±(3%+5)	0.01kVA
40kVA	±(3%+5)	0.01kVA
100kVA	±(3%+5)	0.01kVA
600kVA	±(3%+5)	0.1kVA

Minimum measurement current : 5A Minimum measurement voltage : 20V

POWER FACTOR

(PF)

RANGE	ACCURACY	RESOLUTION
0.3∼1 Capacitive	±(0.02+2)	0.001
0.3~1 Inductive	±(0.02+2)	0.001

Minimum measurement current : 5A Minimum measurement voltage : 20V

REACTIVE POWER

(Var) 2 =(VA) 2 +W 2

RANGE	ACCURACY	RESOLUTION
4kVAr	±(4%+5)	0.01kVAr
10kVAr	±(4%+5)	0.01kVAr
40kVAr	±(4%+5)	0.01kVAr
100kVAr	±(4%+5)	0.01kVAr
600kVAr	±(4%+5)	0.1kVAr

Minimum input current : 5A
Minimum input voltage : 20V

Recording Voltage value \(\) current value \(\) Active Power value to calculate Reactive Power value,

(kWh)

(Hz)

The calculating accuracy is 0.01% of the range.

ACTIVE ENERGY

RANGE	ACCURACY	RESOLUTION
1∼9999kWh	±(3%+2)	0.001kWh

Minimum measurement current : 0.5A Minimum measurement voltage : 10V

FREQUENCY

RANGE	ACCURACY	RESOLUTION
20Hz∼1kHz	0.5%	0.1Hz

Minimum measurement voltage: 20V

* Accuracy: % of reading + number of digits

The specification given assume an operating temperature: 18 °C \sim 28 °C ,humidity up to: 80% , the frequency of voltage and current is 45Hz \sim 65Hz

* Maximum common made voltage: 600V AC RMS

* Display: LCD 9999

* Range: autorange

* Overrange indication: Figure "OL" on the display

* Reading Holding: Figure n the display

* Power supply: 4× 1.5V AA

* Power consume: 250mW

* Storage temperature: -20 ℃ ~70 ℃

* Operating temperature: 0°C ~40°C

* Dimension size: 300mm×103mm×51mm

* Weight: approx. 500g (include battery)

ACCESSORIES

Battery	1.5V AA	4
Test Leads	(MS3000)	1
Connect test clamp	(MS3102)	1
RS232C interface cable	(MS3403)	1
PC Data Record graph	software	1
Carry Case		1